Graphs with Large Obstacle Numbers

نویسندگان

  • Padmini Mukkamala
  • János Pach
  • Deniz Sariöz
چکیده

Motivated by questions in computer vision and sensor networks, Alpert et al. [3] introduced the following definitions. Given a graph G, an obstacle representation of G is a set of points in the plane representing the vertices of G, together with a set of connected obstacles such that two vertices of G are joined by an edge if an only if the corresponding points can be connected by a segment which avoids all obstacles. The obstacle number of G is the minimum number of obstacles in an obstacle representation of G. It was shown in [3] that there exist graphs of n vertices with obstacle number at least Ω( √ logn). We use extremal graph theoretic tools to show that (1) there exist graphs of n vertices with obstacle number at least Ω(n/log2 n), and (2) the total number of graphs on n vertices with bounded obstacle number is at most 2o(n ). Better results are proved if we are allowed to use only convex obstacles or polygonal obstacles with a small number of sides.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Obstacle Numbers

The obstacle number is a new graph parameter introduced by Alpert, Koch, and Laison (2010). Mukkamala et al. (2012) show that there exist graphs with n vertices having obstacle number in Ω(n/ log n). In this note, we up this lower bound to Ω(n/(log log n)2). Our proof makes use of an upper bound of Mukkamala et al. on the number of graphs having obstacle number at most h in such a way that any ...

متن کامل

The Ramsey numbers of large trees versus wheels

For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.

متن کامل

Convex obstacle numbers of outerplanar graphs and bipartite permutation graphs

The disjoint convex obstacle number of a graph G is the smallest number h such that there is a set of h pairwise disjoint convex polygons (obstacles) and a set of n points in the plane (corresponding to V (G)) so that a vertex pair uv is an edge if and only if the corresponding segment uv does not meet any obstacle. We show that the disjoint convex obstacle number of an outerplanar graph is alw...

متن کامل

On the Eccentric Connectivity Index of Unicyclic Graphs

In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.

متن کامل

On the Structure of Graphs with Low Obstacle Number

The obstacle number of a graph G is the smallest number of polygonal obstacles in the plane with the property that the vertices of G can be represented by distinct points such that two of them see each other if and only if the corresponding vertices are joined by an edge. We list three small graphs that require more than one obstacle. Using extremal graph theoretic tools developed by Prömel, St...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010